A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine.

一种用于引导关节软骨再生医学的可编程关节炎特异性受体

阅读:6
作者:Walton Bonnie L, Shattuck-Brandt Rebecca, Hamann Catherine A, Tung Victoria W, Colazo Juan M, Brand David D, Hasty Karen A, Duvall Craig L, Brunger Jonathan M
OBJECTIVE: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration. DESIGN: A single-chain variable fragment specific for type II collagen (CII) that is exposed in damaged cartilage was used to produce a synthetic Notch (synNotch) receptor that enables "CII-synNotch" mesenchymal stromal cells (MSCs) to recognize degraded cartilage. Artificial signaling induced by both CII-treated culture surfaces and primary tissues was measured via fluorescence and luminescence assays. Separate studies measured the ability of CII-synNotch to govern cartilage anabolic activity of MSCs. Finally, a co-culture with ATDC5 chondrocytes was used to determine whether CII-synNotch MSCs can protect chondrocytes against deleterious effects of pro-inflammatory interleukin-1 in a CII-dependent manner. RESULTS: CII-synNotch MSCs are highly and selectively responsive to CII, but not type I collagen, as measured by luminescence assays, fluorescence microscopy, and concentrations of secreted transgene products in culture media. CII-synNotch cells exhibit the capacity to distinguish between healthy and damaged cartilage tissue and constrain transgene expression to regions of exposed CII fibers. Receptor-regulated production of cartilage anabolic and anti-inflammatory transgenes was effective to mediate cartilage regenerative functions. CONCLUSION: This work demonstrates proof-of-concept that the synNotch platform guides MSCs for spatially regulated, disease-dependent delivery of OA-relevant biologic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。