Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens.

聚(2-羟乙基甲基丙烯酸酯)隐形眼镜上溶菌酶的摩擦学性能与定量结构变化之间的相关性

阅读:6
作者:Chang You-Cheng, Su Chen-Ying, Chang Chia-Hua, Fang Hsu-Wei, Wei Yang
The ocular discomfort is the leading cause of contact lens wear discontinuation. Although the tear proteins as a lubricant might improve contact lens adaptation, some in vitro studies suggested that the amount of adsorbed proteins could not simply explain the lubricating performance of adsorbed proteins. The purpose of this study was to quantify the structural changes and corresponding ocular lubricating properties of adsorbed protein on a conventional contact lens material, poly (2-hydroxyethyl methacrylate) (pHEMA). The adsorption behaviors of lysozyme on pHEMA were determined by the combined effects of protein-surface and protein-protein interactions. Lysozyme, the most abundant protein in tear, was first adsorbed onto the pHEMA surface under widely varying protein solution concentrations to saturate the surface, with the areal density of the adsorbed protein presenting different protein-protein effects within the layer. These values were correlated with the measured secondary structures, and corresponding friction coefficient of the adsorbed and protein covered lens surface, respectively. The decreased friction coefficient value was an indicator of the lubricated surfaces with improved adaptation. Our results indicate that the protein-protein effects help stabilize the structure of adsorbed lysozyme on pHEMA with the raised friction coefficient measured critical for the innovation of contact lens material designs with improved adaptation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。