Random mutagenesis of Phaeodactylum tricornutum using ultraviolet, chemical, and X-radiation demonstrates the need for temporal analysis of phenotype stability.

利用紫外线、化学和 X 射线对三角褐指藻进行随机诱变,证明了对表型稳定性进行时间分析的必要性

阅读:2
作者:Macdonald Miller Sean, Abbriano Raffaela M, Herdean Andrei, Banati Richard, Ralph Peter J, Pernice Mathieu
We investigated two non-ionising mutagens in the form of ultraviolet radiation (UV) and ethyl methanosulfonate (EMS) and an ionising mutagen (X-ray) as methods to increase fucoxanthin content in the model diatom Phaeodactylum tricornutum. We implemented an ultra-high throughput method using fluorescence-activated cell sorting (FACS) and live culture spectral deconvolution for isolation and screening of potential pigment mutants, and assessed phenotype stability by measuring pigment content over 6 months using high-performance liquid chromatography (HPLC) to investigate the viability of long-term mutants. Both UV and EMS resulted in significantly higher fucoxanthin within the 6 month period after treatment, likely as a result of phenotype instability. A maximum fucoxanthin content of 135 ± 10% wild-type found in the EMS strain, a 35% increase. We found mutants generated using all methods underwent reversion to the wild-type phenotype within a 6 month time period. X-ray treatments produced a consistently unstable phenotype even at the maximum treatment of 1000 Grays, while a UV mutant and an EMS mutant reverted to wild-type after 4 months and 6 months, respectively, despite showing previously higher fucoxanthin than wild-type. This work provides new insights into key areas of microalgal biotechnology, by (i) demonstrating the use of an ionising mutagen (X-ray) on a biotechnologically relevant microalga, and by (ii) introducing temporal analysis of mutants which has substantial implications for strain creation and utility for industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。