Reagents that target protein-protein interactions to rewire signaling are of great relevance in biological research. Computational protein design may offer a means of creating such reagents on demand, but methods for encoding targeting selectivity are sorely needed. This is especially challenging when targeting interactions with ubiquitous recognition modules--for example, PDZ domains, which bind C-terminal sequences of partner proteins. Here we consider the problem of designing selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two PDZ domains (NHERF-2 PDZ2-N2P2 and MAGI-3 PDZ6-M3P6) compete for a receptor C-terminus to differentially modulate oncogenic activities. Because N2P2 has been shown to increase tumorigenicity and M3P6 to decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. We developed a structure-based computational design framework that models peptide flexibility in binding yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further testing our technology. Experimental and computational analysis of selectivity determinants revealed significant indirect energetic coupling in the binding site. Successful discrimination between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for computational approaches to selective PDZ targeting, especially because design relied on a homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that must be addressed to enable truly robust design. The presented framework is general and can be applied in many scenarios to engineer selective targeting.
Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway.
利用计算机设计选择性肽,以区分致癌通路中相似的 PDZ 结构域
阅读:4
作者:Zheng Fan, Jewell Heather, Fitzpatrick Jeremy, Zhang Jian, Mierke Dale F, Grigoryan Gevorg
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.500 |
| 时间: | 2015 | 起止号: | 2015 Jan 30; 427(2):491-510 |
| doi: | 10.1016/j.jmb.2014.10.014 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
