Both lung disease and elevation of blood glucose are associated with increased glucose concentration (from 0.4 to ~4.0 mM) in the airway surface liquid (ASL). This perturbation of ASL glucose makes the airway more susceptible to infection by respiratory pathogens. ASL is minute (~1 μl/cm(2)) and the measurement of glucose concentration in the small volume ASL is extremely difficult. Therefore, we sought to develop a fluorescent biosensor with sufficient sensitivity to determine glucose concentrations in ASL in situ. We coupled a range of environmentally sensitive fluorophores to mutated forms of a glucose/galactose-binding protein (GBP) including H152C and H152C/A213R and determined their equilibrium binding properties. Of these, GBP H152C/A213R-BADAN (Kd 0.86 ± 0.01 mM, Fmax/F0 3.6) was optimal for glucose sensing and in ASL increased fluorescence when basolateral glucose concentration was raised from 1 to 20 mM. Moreover, interpolation of the data showed that the glucose concentration in ASL was increased, with results similar to that using glucose oxidase analysis. The fluorescence of GBP H152C/A213R-BADAN in native ASL from human airway epithelial cultures in situ was significantly increased over time when basolateral glucose was increased from 5 to 20 mM. Overall our data indicate that this GBP is a useful tool to monitor glucose homoeostasis in the lung.
A novel fluorescent sensor protein for detecting changes in airway surface liquid glucose concentration.
一种用于检测气道表面液体葡萄糖浓度变化的新型荧光传感器蛋白
阅读:4
作者:Helassa Nordine, Garnett James P, Farrant Matthew, Khan Faaizah, Pickup John C, Hahn Klaus M, MacNevin Christopher J, Tarran Robert, Baines Deborah L
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2014 | 起止号: | 2014 Dec 1; 464(2):213-20 |
| doi: | 10.1042/BJ20141041 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
