Continuous glucose monitors have revolutionized diabetes management, yet such devices are limited by their cost, invasiveness, and stability. Microneedle (MN) arrays could offer improved comfort compared to invasive implanted or mm-sized needle devices, but such arrays are hampered by complex fabrication processes, limited mechanical and sensor stability, and/or cytotoxicity concerns. This work demonstrates the first crosslinked hydrogel microneedle-bioelectroenzymatic sensor arrays capable of biomarker extraction and robust transdermal continuous monitoring in artificial interstitial fluid for 10 days. The fabrication process via micromolding of dextran-methacrylate (Dex-MA) and dry-state visible light crosslinking is simple and permits the robust fixation of diverse prefabricated electrodes in a single array. Dry-state crosslinking minimized material shrinkage to enable the formation of resistant Dex-MA microneedles with shape control and reproducibility. The polymer substitution level (9-62%) and mass content (10-30Â wt%) affect the mechanical, swelling, and bioelectrocatalytic properties of the integrated sensors. Crosslinked Dex-MA hydrogel matrices provide beneficial cytotoxicity protection and flux-limiting membrane properties to the integrated second generation dehydrogenase-based nanostructured buckypaper biosensor and Ag/AgCl reference electrodes. Polysaccharide-based microneedle technology with encapsulated porous bioelectrodes promise to be a valuable alternative to more invasive devices for safer and longer-term biomarker monitoring.
Self-Extracting Dextran-Based Hydrogel Microneedle Arrays with an Interpenetrating Bioelectroenzymatic Sensor for Transdermal Monitoring with Matrix Protection.
具有互穿生物电酶传感器的自提取葡聚糖基水凝胶微针阵列,用于透皮监测并具有基质保护作用
阅读:4
作者:Darmau Bastien, Sacchi Marta, Texier Isabelle, Gross Andrew J
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Jan;14(2):e2403209 |
| doi: | 10.1002/adhm.202403209 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
