Rapid, facile, and noncovalent cell membrane modification with alkyl-grafted anionic polymers was sought as an approach to enhance intracellular delivery and bioactivity of cationic peptides. We synthesized a library of acrylic acid-based copolymers containing varying amounts of an amine-reactive pentafluorophenyl acrylate monomer followed by postpolymerization modification with a series of alkyl amines to afford precise control over the length and density of aliphatic alkyl side chains. This synthetic strategy enabled systematic investigation of the effect of the polymer structure on membrane binding, potentiation of peptide cell uptake, pH-dependent disruption of lipid bilayers for endosome escape, and intracellular bioavailability. A subset of these polymers exhibited pK(a) of â¼6.8, which facilitated stable membrane association at physiological pH and rapid, pH-dependent endosomal disruption upon endocytosis as quantified in Galectin-8-YFP reporter cells. Cationic cell penetrating peptide (CPP) uptake was enhanced up to 15-fold in vascular smooth muscle cells in vitro when peptide treatment was preceded by a 30-min pretreatment with lead candidate polymers. We also designed and implemented a new and highly sensitive assay for measuring the intracellular bioavailability of CPPs based on the NanoLuciferase (NanoLuc) technology previously developed for measuring intracellular protein-protein interactions. Using this split luciferase class of assay, polymer pretreatment enhanced intracellular delivery of the CPP-modified HiBiT peptide up to 30-fold relative to CPP-HiBiT without polymer pretreatment (p < 0.05). The overall structural analyses show that polymers containing 50:50 or 70:30 molar ratios of carboxyl groups to alkyl side chains of 6-8 carbons maximized peptide uptake, pH-dependent membrane disruption, and intracellular bioavailability and that this potentiation effect was maximized by pairing with CPPs with high cationic charge density. These results demonstrate a rapid, mild method for polymer modification of cell surfaces to potentiate intracellular delivery, endosome escape, and bioactivity of cationic peptides.
Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides.
利用阴离子聚合物两亲分子修饰细胞膜可增强阳离子肽的细胞内递送
阅读:5
作者:Dailing Eric A, Kilchrist Kameron V, Tierney J William, Fletcher R Brock, Evans Brian C, Duvall Craig L
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2020 | 起止号: | 2020 Nov 11; 12(45):50222-50235 |
| doi: | 10.1021/acsami.0c13304 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
