Mycofactocin (MFT) is a ribosomally synthesized and post-translationally-modified redox cofactor found in pathogenic mycobacteria. While MFT biosynthetic proteins have been extensively characterized, the physiological conditions under which MFT biosynthesis is required are not well understood. To gain insights into the mechanisms of regulation of MFT expression in Mycobacterium smegmatis mc(2)155, we investigated the DNA-binding and ligand-binding activities of the putative TetR-like transcription regulator, MftR. In this study, we demonstrated that MftR binds to the mft promoter region. We used DNase I footprinting to identify the 27 bp palindromic operator located 5' to mftA and found it to be highly conserved in Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, and Mycobacterium marinum. To determine under which conditions the mft biosynthetic gene cluster (BGC) is induced, we screened for effectors of MftR. As a result, we found that MftR binds to long-chain acyl-CoAs with low micromolar affinities. To demonstrate that oleoyl-CoA induces the mft BGC in vivo, we re-engineered a fluorescent protein reporter system to express an MftA-mCherry fusion protein. Using this mCherry fluorescent readout, we show that the mft BGC is upregulated in M. smegmatis mc(2)155 when oleic acid is supplemented to the media. These results suggest that MftR controls expression of the mft BGC and that MFT production is induced by long-chain acyl-CoAs. Since MFT-dependent dehydrogenases are known to colocalize with acyl carrier protein/CoA-modifying enzymes, these results suggest that MFT might be critical for fatty acid metabolism or cell wall reorganization.
Biosynthesis of the redox cofactor mycofactocin is controlled by the transcriptional regulator MftR and induced by long-chain acyl-CoA species.
氧化还原辅因子霉菌素的生物合成受转录调节因子 MftR 控制,并由长链酰基辅酶 A 诱导
阅读:5
作者:Mendauletova Aigera, Latham John A
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 Jan;298(1):101474 |
| doi: | 10.1016/j.jbc.2021.101474 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
