Analysis of the genome sequence of Streptomyces leeuwenhoekii C34(T) identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34(T) and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34(T) was not observed, its BGC was also expressed in S. coelicolor The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides.IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.
Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34(T) Yields a Novel Lasso Peptide, Leepeptin.
从李氏链霉菌 C34(T) 中异源表达隐蔽基因簇,产生一种新型套索肽,李氏肽
阅读:3
作者:Gomez-Escribano Juan Pablo, Castro Jean Franco, Razmilic Valeria, Jarmusch Scott A, Saalbach Gerhard, Ebel Rainer, Jaspars Marcel, Andrews Barbara, Asenjo Juan A, Bibb Mervyn J
| 期刊: | Applied and Environmental Microbiology | 影响因子: | 3.700 |
| 时间: | 2019 | 起止号: | 2019 Nov 14; 85(23):e01752-19 |
| doi: | 10.1128/AEM.01752-19 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
