Peptidergic neurones play a pivotal role in the neuromodulation of widespread areas in the nervous system. Generally, it has been accepted that the peptide release from these neurones is regulated by their firing activities. The terminal nerve (TN)-gonadotrophin releasing hormone (GnRH) neurones, which are one of the well-studied peptidergic neurones in vertebrate brains, are characterised by their spontaneous regular pacemaker activities, and GnRH has been suggested to modulate the sensory responsiveness of animals. Although many peptidergic neurones are known to exhibit burst firing activities when they release the peptides, TN-GnRH neurones show spontaneous burst firing activities only infrequently. Thus, it remains to be elucidated whether the TN-GnRH neurones show burst activities and, if so, how the mode switching between the regular pacemaking and bursting modes is regulated in these neurones. In this study, we found that only a single pulse electrical stimulation of the neuropil surrounding the TN-GnRH neurones reproducibly induces transient burst activities in TN-GnRH neurones. Our combined physiological and morphological data suggest that this phenomenon occurs following slow inhibitory postsynaptic potentials mediated by cholinergic terminals surrounding the TN-GnRH neurones. We also found that the activation of muscarinic acetylcholine receptors induces persistent opening of potassium channels, resulting in a long-lasting hyperpolarisation. This long hyperpolarisation induces sustained rebound depolarisation that has been suggested to be generated by a combination of persistent voltage-gated Na(+) channels and low-voltage-activated Ca(2+) channels. These new findings suggest a novel type of cholinergic regulation of burst activities in peptidergic neurones, which should contribute to the release of neuropeptides.
Burst generation mediated by cholinergic input in terminal nerve-gonadotrophin releasing hormone neurones of the goldfish.
金鱼终末神经促性腺激素释放激素神经元中胆碱能输入介导的爆发性放电
阅读:3
作者:Kawai Takafumi, Abe Hideki, Oka Yoshitaka
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2013 | 起止号: | 2013 Nov 15; 591(22):5509-23 |
| doi: | 10.1113/jphysiol.2013.258343 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
