Metal ions and electrolytes regulate the dissociation of heme from human hemopexin at physiological pH.

金属离子和电解质在生理 pH 值下调节血红素从人血红素结合蛋白中的解离

阅读:5
作者:Mauk Marcia R, Mauk A Grant
The stability of the hemopexin-heme (Hx-heme) complex to dissociation of the heme prosthetic group has been examined in bicarbonate buffers in the presence and absence of various divalent metal ions. In NH(4)HCO(3) buffer (pH 7.4, 20 mm, 25 degrees C) containing Zn(2+) (100 microm), 14% of the heme dissociates from this complex (4.5 microm) within 10 min, and 50% dissociates within 2 h. In the absence of metal ions, the rate of dissociation of this complex is far lower, is decreased further in KHCO(3) solution, and is minimal in NaHCO(3). In NH(4)HCO(3) buffer, dissociation of the Hx-heme complex is accelerated by addition of divalent metals with decreasing efficiency in the order Zn(2+) > Cu(2+) >> Ni(2+) > Co(2+)>>Mn(2+). Addition of Ca(2+) prior to addition of Zn(2+) stabilizes the Hx-heme complex to dissociation of the heme group, and addition of Ca(2+) after Zn(2+)-induced dissociation of the Hx-heme complex results in re-formation of the Hx-heme complex. These effects are greatly accelerated at 37 degrees C and diminished in other buffers. Overall, the solution conditions that promote formation of the Hx-heme complex are similar to those found in blood plasma, and conditions that promote release of heme are similar to those that the Hx-heme complex should encounter in endosomes following endocytosis of the complex formed with its hepatic receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。