The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1

Keap1-Nrf2 应激反应通路通过降解线粒体裂变蛋白 Drp1 来促进线粒体过度灌注

阅读:4
作者:Rasha Sabouny, Erik Fraunberger, Michèle Geoffrion, Andy Cheuk-Him Ng, Stephen D Baird, Robert A Screaton, Ross Milne, Heidi M McBride, Timothy E Shutt

Aims

Mitochondrial function is coupled to metabolic and survival pathways through both direct signaling cascades and dynamic changes in mitochondrial morphology. For example, a hyperfused mitochondrial reticulum is activated upon cellular stress and is protective against cell death. As part of a genome-wide small inhibitory ribonucleic acid screen, we identified the central redox regulator, Keap1, as a novel regulator of mitochondrial morphology. Here, we aimed to determine the mechanism through which redox signaling and Keap1 mediate changes in mitochondrial morphology.

Conclusion

This study has identified the Keap1-Nrf2 nexus and modulation of proteasomal activity as novel avenues to inhibit mitochondrial fission. These findings are important, because inhibiting mitochondrial fission is a promising therapeutic approach to restore the balance between fission and fusion, which is attractive for an increasing number of disorders linked to mitochondrial dysfunction. Antioxid. Redox Signal. 27, 1447-1459.

Results

We found that the Nrf2 transcription factor is required for mitochondrial hyperfusion induced by knockdown of Keap1. Nrf2, which is negatively regulated by Keap1, mediates the cell's response to stress by controlling the expression of several hundred genes, including proteasome expression. We next showed that increased proteasome activity, a result of increased Nrf2 activity, is responsible for the degradation of the mitochondrial fission protein Drp1, which occurs in an ubiquitin-independent manner. Innovation: Our study described a novel pathway by which Nrf2 activation, known to occur in response to increased oxidative stress, decreases mitochondrial fission and contributes to a hyperfused mitochondrial network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。