Antimicrobial Loaded Graft-Copolymer Nanoparticles for Treatment of Pseudomonas aeruginosa Infections.

用于治疗铜绿假单胞菌感染的抗菌剂负载接枝共聚物纳米颗粒

阅读:7
作者:Soler Yadiel Varela, Xu William, Lima Mariana R N, McDonald Jessica, Jagpal Sugeet K, Kirn Thomas J, Hussain Sabiha, Devore David I, Roth Charles M
Nearly 80% of cystic fibrosis patients are affected by persistent lung infections, with Pseudomonas aeruginosa being one of the major culprits. Treatment of P. aeruginosa is further complicated by its ability to form biofilms. Anionic compounds within the biofilm and thick cystic fibrosis mucus interact with cationic antimicrobials, hindering treatment efficacy. In this study, we investigated the treatment of lung infections by delivering antimicrobials via polyelectrolyte surfactants that are composed of an anionic poly(alkylacrylic acid) backbone with grafted polyetheramine pendent chains. When combined with cationic antimicrobials, they selfassemble into nanoparticles via electrostatic interactions. We assessed the role of backbone chemistry and graft density on nanoparticle physical properties and evaluated the antimicrobial activity of these formulations against planktonic and biofilm cultures of P. aeruginosa strains derived from clinical isolates. All synthesized polyelectrolyte surfactants demonstrated high levels of antimicrobial encapsulation, with the extent of drug bound corresponding to the calculated hydrophilic-lipophilic balance values. We observed significantly increased antimicrobial activity against planktonic cultures using nanoformulations containing one of the polyelectrolyte surfactants, PMAA-g-10%J. In contrast, all tested nanoformulations retained, but did not increase, activity against biofilms. By monitoring membrane potentials and nanoparticle uptake, it was found that the nanoparticles directly associate with the bacterial cell membranes, which may enhance drug delivery and underlie the improved activity against the planktonic bacteria. In conclusion, we provide a proof of concept for the design of polyelectrolyte surfactants for the nanoencapsulation and delivery of cationic drug cargoes against P. aeruginosa infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。