Similarities in fungal and animal cells make antifungal discovery efforts more difficult than those for other classes of antimicrobial drugs. Currently, there are only three major classes of antifungal drugs used for the treatment of systemic fungal diseases: polyenes, azoles, and echinocandins. Even in situations where the offending fungal organism is susceptible to the available drugs, treatment courses can be lengthy and unsatisfactory, since eradication of infection is often very difficult, especially in individuals with impaired immunity. Consequently, there is a need for new and more effective antifungal drugs. We have identified compounds with significant antifungal activity in the Malaria Box (Medicines for Malaria Ventures, Geneva, Switzerland) that have higher efficacy than some of the currently used antifungal drugs. Our best candidate, MMV665943 (IUPAC name 4-[6-[[2-(4-aminophenyl)-3H-benzimidazol-5-yl]methyl]-1H-benzimidazol-2-yl]aniline), here referred to as DM262, showed 16- to 32-fold-higher activity than fluconazole against Cryptococcus neoformans. There was also significant antifungal activity in other fungal species with known antifungal resistance, such as Lomentospora prolificans and Cryptococcus gattii. Antifungal activity was also observed against a common fungus, Candida albicans. These results are important because they offer a potentially new class of antifungal drugs and the repurposing of currently available therapeutics. IMPORTANCE Much like the recent increase in drug-resistant bacteria, there is a rise in antifungal-resistant strains of pathogenic fungi. There is a need for novel and more potent antifungal therapeutics. Consequently, we investigated a mixed library of drug-like and probe-like compounds with activity in Plasmodium spp. for activity against two common fungal pathogens, Cryptococcus neoformans and Candida albicans, along with two less common pathogenic species, Lomentospora prolificans and Cryptococcus gattii. We uncover a previously uncharacterized drug with higher broad-spectrum antifungal activity than some current treatments. Our findings may eventually lead to a compound added to the arsenal of antifungal therapeutics.
Novel Antifungal Compounds Discovered in Medicines for Malaria Venture's Malaria Box.
疟疾药物风险投资公司疟疾药箱中发现了新型抗真菌化合物
阅读:6
作者:Jung Eric H, Meyers David J, Bosch Jürgen, Casadevall Arturo
| 期刊: | mSphere | 影响因子: | 3.100 |
| 时间: | 2018 | 起止号: | 2018 Mar 14; 3(2):e00537-17 |
| doi: | 10.1128/mSphere.00537-17 | 研究方向: | 微生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
