The increase in the prevalence of multidrug-resistant Acinetobacter baumannii (MDRAB) strains is a serious public health concern. Antimicrobial peptides (AMPs) are a possible solution to this problem. In this study, we examined whether AMPs could be derived from phage endolysins. We synthesized four AMPs based on an amphipathic helical region in the C-terminus of endolysin LysAB2 encoded by the A. baumannii phage ΦAB2. These peptides showed potent antibacterial activity against A. baumannii (minimum inhibitory concentration, 4-64 μM), including some MDR and colistin-resistant A. baumannii. Of the four peptides, LysAB2 P3, with modifications that increased its net positive charge and decreased its hydrophobicity, showed high antibacterial activity against A. baumannii but little haemolytic and no cytotoxic activity against normal eukaryotic cells. The results of electron microscopy experiments and a fluorescein isothiocyanate staining assay indicated that this peptide killed A. baumannii through membrane permeabilization. Moreover, in a mouse intraperitoneal infection model, at 4 h after the bacterial injection, LysAB2 P3 decreased the bacterial load by 13-fold in ascites and 27-fold in blood. Additionally, LysAB2 P3 rescued sixty percent of mice heavily infected with A. baumannii from lethal bacteremia. Our results confirmed that bacteriophage endolysins are a promising resource for developing effective AMPs.
Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2.
源自鲍曼不动杆菌噬菌体溶菌素 LysAB2 的高效抗菌修饰肽
阅读:3
作者:Peng Shih-Yi, You Ren-In, Lai Meng-Jiun, Lin Nien-Tsung, Chen Li-Kuang, Chang Kai-Chih
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2017 | 起止号: | 2017 Sep 13; 7(1):11477 |
| doi: | 10.1038/s41598-017-11832-7 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
