Aim: To study the ability of bifidobacterial strains isolated from fecal donors to prevent pathogens from adhering to intestinal mucus, along with their antimicrobial susceptibility. Methods: Pathogen prevention was assessed through an in vitro adhesion assay using immobilized porcine mucus. Subsequently, bifidobacterial RNA-Seq data were analyzed to pinpoint glycoside hydrolases and glycosyltransferases possibly involved in mucus degradation affecting pathogen adhesion. The antimicrobial susceptibility of bifidobacterial strains was evaluated using in vitro susceptibility testing, followed by analysis of whole-genome sequencing data to reveal antimicrobial resistance genes. Results: Bifidobacterial strains inhibited pathogen adhesion to intestinal mucus, with most strains reducing the adhesion levels of pathogens like Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus by at least 70%. None of the strains significantly affected Pseudomonas aeruginosa, but they moderately reduced the adhesion of Yersinia enterocolitica. Gene expression analysis indicated that the more effective strains expressed higher levels of glycoside hydrolases, correlating with their pathogen exclusion capabilities. Antimicrobial susceptibility testing revealed that most strains were sensitive to several antibiotics, though some exhibited resistance to tobramycin, trimethoprim, and ciprofloxacin. Notably, one strain carried the tetW gene, conferring resistance to tetracycline. Conclusion: The bifidobacterial strains characterized in this study show potential for bacteriotherapeutic applications due to their strong ability to interfere with the adhesion of pathogenic bacteria and their lack of alarming antimicrobial resistance patterns.
Pathogen exclusion from intestinal mucus and antimicrobial susceptibility of Bifidobacterium spp. strains from fecal donors.
从肠道粘液中排除病原体以及粪便供体中双歧杆菌菌株的抗菌药物敏感性
阅读:9
作者:Ronkainen Aki, Khan Imran, Satokari Reetta
| 期刊: | Microbiome Research Reports | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2024 Nov 1; 4(1):5 |
| doi: | 10.20517/mrr.2024.43 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
