Release Kinetics of Metronidazole from 3D Printed Silicone Scaffolds for Sustained Application to the Female Reproductive Tract.

甲硝唑从 3D 打印硅胶支架中释放动力学,用于持续应用于女性生殖道

阅读:10
作者:Herold Sydney E, Kyser Anthony J, Orr Margaret G, Mahmoud Mohamed Y, Lewis Warren G, Lewis Amanda L, Steinbach-Rankins Jill M, Frieboes Hermann B
Sustained vaginal administration of antibiotics or probiotics has been proposed to improve treatment efficacy for bacterial vaginosis. 3D printing has shown promise for development of systems for local agent delivery. In contrast to oral ingestion, agent release kinetics can be fine-tuned by the 3D printing of specialized scaffold designs tailored for particular treatments while enhancing dosage effectiveness via localized sustained release. It has been challenging to establish scaffold properties as a function of fabrication parameters to obtain sustained release. In particular, the relationships between scaffold curing conditions, compressive strength, and drug release kinetics remain poorly understood. This study evaluates 3D printed scaffold formulation and feasibility to sustain the release of metronidazole, a commonly used antibiotic for BV. Cylindrical silicone scaffolds were printed and cured using three different conditions relevant to potential future incorporation of temperature-sensitive labile biologics. Compressive strength and drug release were monitored for 14d in simulated vaginal fluid to assess long-term effects of fabrication conditions on mechanical integrity and release kinetics. Scaffolds were mechanically evaluated to determine compressive and tensile strength, and elastic modulus. Release profiles were fitted to previous kinetic models to differentiate potential release mechanisms. The Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin models best described the release, indicating similarity to release from insoluble or polymeric matrices. This study shows the feasibility of 3D printed silicone scaffolds to provide sustained metronidazole release over 14d, with compressive strength and drug release kinetics tuned by the fabrication parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。