Morphine, the most widely used analgesic, relieves severe pain by activating the μ-opioid receptor (MOR), whereas naloxone, with only slight structural changes compared to morphine, exhibits inhibitory effect, and is used to treat opioid abuse. The mechanism by which the MOR distinguishes between the two is unclear. Molecular dynamics (MD) simulations on a 1-μs time scale and metadynamics-enhanced conformational sampling are used here to determine the different interactions of these two ligands with MOR: morphine adjusted its pose by continuously flipping deeper into the pocket, whereas naloxone failed to penetrate deeper because its allyl group conflicts with several residues of MOR. The endogenous peptide ligand endomorphin-1 (EM-1) underwent almost no significant conformational changes during the MD simulations. To validate these processes, we employed GIRK4(S143T), a MOR-activated G(βγ)-protein effector, in combination with mutagenesis and electrophysiological recordings. We verified the role of some key residues in the dynamic recognition of naloxone and morphine and identified the key residue I322, which leads to differential recognition of morphine and naloxone while assisting EM-1 in activating MOR. Reducing the side chain size of I322 (MOR(I322A)) transformed naloxone from an inhibitor directly into an agonist of MOR, and I322A also significantly attenuated the potency of MOR on EM-1, confirming that binding deep in the pocket is critical for the agonistic effect of MOR. This finding reveals a dynamic mechanism for the response of MOR to different ligands and provides a basis for the discovery of new ligands for MOR at the atomic level.
Dynamic recognition of naloxone, morphine and endomorphin1 in the same pocket of µ-opioid receptors.
γ-阿片受体的同一口袋中动态识别纳洛酮、吗啡和内啡肽1
阅读:4
作者:Zhang Xin, Sun Meng-Yang, Zhang Xue, Guo Chang-Run, Lei Yun-Tao, Wang Wen-Hui, Fan Ying-Zhe, Cao Peng, Li Chang-Zhu, Wang Rui, Li Xing-Hua, Yu Ye, Yang Xiao-Na
| 期刊: | Frontiers in Molecular Biosciences | 影响因子: | 4.000 |
| 时间: | 2022 | 起止号: | 2022 Aug 16; 9:925404 |
| doi: | 10.3389/fmolb.2022.925404 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
