Plasminogen activator inhibitor type 1 up-regulation is associated with skeletal muscle atrophy and associated fibrosis.

纤溶酶原激活物抑制剂 1 型上调与骨骼肌萎缩和相关纤维化有关

阅读:2
作者:Naderi Jasmin, Bernreuther Christian, Grabinski Nicole, Putman Charles T, Henkel Birgit, Bell Gordon, Glatzel Markus, Sultan Karim R
Muscle wasting remains a feature of many diseases and is counteracted by anabolic supplementation or exercise. Persisting atrophy-inducing conditions can be complicated by skeletal muscle fibrosis, which leads to functional impairment. Identification of early mechanisms that initiate atrophy-induced fibrosis may reveal novel targets for therapy or diagnosis. Therefore, we investigated changes in the expression of genes involved in extracellular matrix homeostasis during glucocorticoid-induced atrophy of myotubes and compared them with insulin-like growth factor-1-induced hypertrophy. Obtained results were verified in rat gastrocnemius muscle that was exposed to microgravity by space flight for 2 weeks. Myostatin and atrogin-1 mRNA levels reflected the magnitude of atrophy. Despite differential induction of these negative muscle mass regulators, no major changes in matrix metalloproteinases-2, -9, and -14 mRNAs or their physiological inhibitors could be detected in either atrophy model. In contrast, transcript levels of plasminogen activator inhibitor type 1 (PAI-1) was dramatically increased in atrophic myotubes and microgravity-exposed rat gastrocnemius muscle, while plasminogen activators remained unaltered. In contrast to atrophy, no increase in PAI-1 mRNA levels could be detected in rat hindlimb that was electrically stimulated for 21 days. Furthermore, a strong increase in PAI-1 mRNA levels was identified in skeletal muscle of patients with neurogenic muscle atrophy. Our study suggests that increased PAI-1 expression in atrophic skeletal muscle may lead to muscle fibrosis by reducing plasmin generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。