Lysophosphatidylcholine acyltransferase 1 upregulation and concomitant phospholipid alterations in clear cell renal cell carcinoma

透明细胞肾细胞癌中的溶血磷脂酰胆碱酰基转移酶 1 上调和伴随的磷脂改变

阅读:5
作者:Yiqing Du, Qiang Wang, Xingzhong Zhang, Xiaofeng Wang, Caipeng Qin, Zhengzuo Sheng, Huaqi Yin, Changtao Jiang, Jing Li, Tao Xu

Background

The involvement of lipid metabolism in tumourigenesis and the progression of clear cell renal cell carcinoma (ccRCC) have been reported. However, the role of phospholipid profile alterations in ccRCC has not yet been systematically explored. In the present study, we compared the phospholipid compositions between ccRCC and paired normal renal tissues.

Conclusion

Selective changes in PC and LPC composition were observed in ccRCC tissues. The overexpression of LPCAT1 promotes the development and progression of ccRCC, likely through the conversion of LPC to PC.

Methods

The phospholipid compositions of paired ccRCC and normal renal tissues were evaluated using liquid chromatography tandem mass spectrometry (LC/MS/MS). To evaluate the mRNA and protein levels of lysophosphatidylcholine acyltransferase (LPCAT), which converts lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), qRT-PCR, western blotting and immunohistochemistry were performed. The correlations of LPCAT1 expression with clinicopathological features and prognosis were assessed. In addition, siRNAs were used to knockdown LPCAT1 expression in ccRCC cell lines, and its effect on cell proliferation, cell cycle, migration and invasion were investigated.

Results

The phospholipid compositions of ccRCC and normal renal tissues were significantly different. Multiple LPC species were decreased and corresponding PC species were increased in cancer tissues. The mRNA and protein levels of LPCAT1 were up-regulated in ccRCC tissues compared with normal renal tissues, and LPCAT1 expression was significantly correlated with unfavourable pathological features (higher tumour grade, higher TNM stage and larger tumour size) and overall survival. In cell line experiments, LPCAT1 knockdown depleted PCs, inhibited cell proliferation, migration and invasion and induced cell cycle arrest at the G0/G1 phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。