Exploring the Antibacterial Potency of Cymbopogon Essential Oils: Liposome Encapsulation and Phytochemical Insights.

探索香茅精油的抗菌效力:脂质体包裹和植物化学见解

阅读:4
作者:Elmi Abdirahman, Abdoul-Latif Fatouma M, Pasc Andréea, Risler Arnaud, Philippot Stéphanie, Gil-Ortiz Ricardo, Laurain-Mattar Dominique, Spina Rosella
Background: Antimicrobial resistance (AMR) represents a critical global health challenge, requiring innovative strategies to combat resistant bacterial strains. Cymbopogon essential oils (EOs) are promising natural antimicrobial agents. Methods: The EO of Cymbopogon commutatus was extracted by hydrodistillation from fresh aerial parts and compared to commercial EOs from C. citratus, C. nardus, and C. winterianus. Antibacterial activity was evaluated against seven bacterial strains (two Gram-positive and five Gram-negative). Both water-soluble fractions and liposome-encapsulated formulations were tested. Liposomes were prepared using soybean lecithin, and their stability was assessed by dynamic light scattering (DLS). The chemical composition of the pure EOs, water-soluble fractions and non-water-soluble fractions was analyzed by gas chromatography-mass spectrometry (GC-MS). Results: Liposome encapsulation improved EO solubility in aqueous media and significantly enhanced antibacterial efficacy, reducing minimum inhibitory concentration (MIC) values compared to the water-soluble fractions (MICs ≥ 25%). Among the tested formulations, the liposome containing C. citratus EO exhibited the strongest inhibitory effect against Staphylococcus aureus (MIC: 0.04%) followed by liposomes with C. nardus and C. commutatus (MIC: 0.08%). Against Enterococcus faecalis, the most effective formulation was the liposome containing C. winterianus EO (MIC: 0.02%), followed by C. citratus (MIC: 0.08%). The liposome formulated with C. winterianus maintained its particle size over 72 h without phase separation. GC-MS analysis revealed distinct phytochemical profiles: C. commutatus EO was rich in piperitone (73.9%) and C. citratus was rich in (Z)-(3,3-Dimethyl)-cyclohexylideneacetaldehyde (39.9%) and citral (32.5%), while C. nardus and C. winterianus were dominated by geraniol (21.5%) and citronellal (30.8%), respectively. Notably, piperitone, the major compound in C. commutatus EO, exhibited strong antibacterial activity against S. aureus (MIC of <0.04%). Conclusions: These findings support the potential of liposome-encapsulated Cymbopogon EOs as an effective and sustainable strategy to address AMR. This study provides a foundation for the development of plant-based antimicrobial formulations with improved efficacy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。