Interpretable deep learning methods for multiview learning.

用于多视角学习的可解释深度学习方法

阅读:12
作者:Wang Hengkang, Lu Han, Sun Ju, Safo Sandra E
BACKGROUND: Technological advances have enabled the generation of unique and complementary types of data or views (e.g. genomics, proteomics, metabolomics) and opened up a new era in multiview learning research with the potential to lead to new biomedical discoveries. RESULTS: We propose iDeepViewLearn (Interpretable Deep Learning Method for Multiview Learning) to learn nonlinear relationships in data from multiple views while achieving feature selection. iDeepViewLearn combines deep learning flexibility with the statistical benefits of data and knowledge-driven feature selection, giving interpretable results. Deep neural networks are used to learn view-independent low-dimensional embedding through an optimization problem that minimizes the difference between observed and reconstructed data, while imposing a regularization penalty on the reconstructed data. The normalized Laplacian of a graph is used to model bilateral relationships between variables in each view, therefore, encouraging selection of related variables. iDeepViewLearn is tested on simulated and three real-world data for classification, clustering, and reconstruction tasks. For the classification tasks, iDeepViewLearn had competitive classification results with state-of-the-art methods in various settings. For the clustering task, we detected molecular clusters that differed in their 10-year survival rates for breast cancer. For the reconstruction task, we were able to reconstruct handwritten images using a few pixels while achieving competitive classification accuracy. The results of our real data application and simulations with small to moderate sample sizes suggest that iDeepViewLearn may be a useful method for small-sample-size problems compared to other deep learning methods for multiview learning. CONCLUSION: iDeepViewLearn is an innovative deep learning model capable of capturing nonlinear relationships between data from multiple views while achieving feature selection. It is fully open source and is freely available at https://github.com/lasandrall/iDeepViewLearn .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。