Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties.

碳包覆的 FeCo 纳米粒子作为具有光热和磁热特性的灵敏磁性粒子成像示踪剂

阅读:2
作者:Song Guosheng, Kenney Michael, Chen Yun-Sheng, Zheng Xianchuang, Deng Yong, Chen Zhuo, Wang Shan X, Gambhir Sanjiv Sam, Dai Hongjie, Rao Jianghong
The low magnetic saturation of iron oxide nanoparticles, which are developed primarily as contrast agents for magnetic resonance imaging, limits the sensitivity of their detection using magnetic particle imaging (MPI). Here, we show that FeCo nanoparticles that have a core diameter of 10 nm and bear a graphitic carbon shell decorated with poly(ethylene glycol) provide an MPI signal intensity that is sixfold and fifteenfold higher than the signals from the superparamagnetic iron oxide tracers VivoTrax and Feraheme, respectively, at the same molar concentration of iron. We also show that the nanoparticles have photothermal and magnetothermal properties and can therefore be used for tumour ablation in mice, and that they have high optical absorbance in a broad near-infrared region spectral range (wavelength, 700-1,200 nm), making them suitable as tracers for photoacoustic imaging. As sensitive multifunctional and multimodal imaging tracers, carbon-coated FeCo nanoparticles may confer advantages in cancer imaging and hyperthermia therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。