Cell segmentation and counting play a very important role in the medical field. The diagnosis of many diseases relies heavily on the kind and number of cells in the blood. convolution neural network achieves encouraging results on image segmentation. However, this data-driven method requires a large number of annotations and can be a time-consuming and expensive process, prone to human error. In this paper, we present a novel frame to segment and count cells without too many manually annotated cell images. Before training, we generated the cell image labels on single-kind cell images using traditional algorithms. These images were then used to form the train set with the label. Different train sets composed of different kinds of cell images are presented to the segmentation model to update its parameters. Finally, the pretrained U-Net model is transferred to segment the mixed cell images using a small dataset of manually labeled mixed cell images. To better evaluate the effectiveness of the proposed method, we design and train a new automatic cell segmentation and count framework. The test results and analyses show that the segmentation and count performance of the framework trained by the proposed method equal the model trained by large amounts of annotated mixed cell images.
Auto-CSC: A Transfer Learning Based Automatic Cell Segmentation and Count Framework.
Auto-CSC:一种基于迁移学习的自动细胞分割和计数框架
阅读:6
作者:Zhan Guangdong, Wang Wentong, Sun Hongyan, Hou Yaxin, Feng Lin
| 期刊: | Cyborg and Bionic Systems | 影响因子: | 2.000 |
| 时间: | 2022 | 起止号: | 2022 Apr 9; 2022:9842349 |
| doi: | 10.34133/2022/9842349 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
