Transcriptomic Profile of Early Antral Follicles: Predictive Somatic Gene Markers of Oocyte Maturation Outcome.

早期窦卵泡的转录组特征:预测卵母细胞成熟结果的体细胞基因标记

阅读:5
作者:Peserico Alessia, Barboni Barbara, Camerano Spelta Rapini Chiara, Di Berardino Chiara, Capacchietti Giulia, Canciello Angelo, Konstantinidou Fani, Donato Marisa, Stuppia Liborio, Gatta Valentina
Early antral follicles (EAfs) offer oocyte potential in Assisted Reproductive Technology (ART), but most fail to mature under current in vitro maturation (IVM) protocols. This study examines transcriptomic profiles of the follicular wall (FW) compartment during IVM in ovine EAfs using a 3D follicle-enclosed oocyte (FEO) culture to identify somatic gene markers predicting oocyte maturation success. Differentially expressed genes (DEGs) were identified across three comparisons: pre- vs. post-hCG in FW enclosing mature/fertilizable (1) or immature (2) oocytes, and post-hCG between FW supporting successful vs. failed maturation (3). Network analysis highlighted key modulated and HUB genes. Two DEG categories emerged: genes regulating meiosis resumption and genes defining follicular signatures linked to oocyte competence. Meiosis resumption involved ECM remodeling, hypoxia, and relaxin signaling activation, while proliferative and metabolic pathways were downregulated. MMP13 and EGFR regulated the ECM pathway, working for meiosis resumption, while TGFB1 predicted failure. Oocyte competence involves ECM activation and the suppression of stress and cell cycle pathways, with ITIH4 being conducive to central HUB tuning inflammation and angiogenesis-dependent maturation. This study reveals molecular mechanisms behind follicle maturation, identifying transcriptomic signatures for FW releasing mature/fertilizable and incompetent oocytes. It confirms known biomarkers and uncovers new regulators, offering tools to assess follicle quality, improve IVF-oocyte selection, and enhance fertility preservation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。