Background and objectives: We have developed a standardized, easy-to-use in vitro model to study single- and multiple-species oral biofilms in real time through impedance technology, which elucidates the kinetics of biofilm formation in 96-well plates, without the requirement for any further manipulation. Design and Results: Using this system, biofilms of Streptococcus mutans appear to be sugar-dependent and highly resistant to amoxicilin, an antibiotic to which this oral pathogen is highly sensitive in a planktonic state. Saliva, tongue and dental plaque samples were also used as inocula to form multiple-species biofilms. DNA isolation and Illumina sequencing of the biofilms showed that the multi-species biofilms were formed by tens or hundreds of species, had a similar composition to the original inoculum, and included fastidious microorganisms which are important for oral health and disease. As an example of the potential applications of the model, we show that oral biofilms can be inhibited by amoxicilin, but in some cases they are induced by the antibiotic, suggesting the existence of responders and non-responders to a given antibiotic. Conclusions: We therefore propose the system as a valid in vitro model to study oral biofilm dynamics, including their susceptibility to antibiotics, antiseptics or anti-adhesive compounds.
Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications.
利用阻抗技术开发用于实时研究口腔生物膜的体外系统:验证和潜在应用
阅读:4
作者:Mira Alex, Buetas Elena, Rosier Bob, Mazurel Danuta, Villanueva-Castellote Ãlvaro, Llena Carmen, Ferrer Maria D
| 期刊: | Journal of Oral Microbiology | 影响因子: | 5.500 |
| 时间: | 2019 | 起止号: | 2019 May 6; 11(1):1609838 |
| doi: | 10.1080/20002297.2019.1609838 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
