Dynamic Mechanical Properties and Constitutive Modeling of Polyurethane Microporous Elastomers.

聚氨酯微孔弹性体的动态力学性能和本构模型

阅读:5
作者:Liu Huiming, Xiao Youcai, Zou Yu, Han Yong, Fan Chenyang, Sun Yi
The present study fabricated samples of polyurethane elastomers (PUEs) with three distinct densities and assessed their mechanical responses using split Hopkinson pressure bar (SHPB) tests. The findings reveal a significant increase in PUE stress with increasing strain rate and density. To further investigate the influence of strain rate sensitivity on PUEs, a strain rate sensitivity coefficient was employed to quantify the impact of strain rate on the mechanical properties of PUEs. Separate quantifications were performed for collapse stress, plateau stress, and densification strain as indicators of the strain rate sensitivity coefficient. The results demonstrate that the collapse stress sensitivity coefficient was notably affected by the applied strain rate. Additionally, both collapse and plateau stresses exhibited an increase with increasing density, which could be described by a power function relationship. Based on the theory of strain energy function, a constitutive model considering density and strain rate effects was developed to describe the stress-strain behavior of PUEs under various densities and strain rates. A comparison between this constitutive relationship and experimental results showed good agreement, highlighting its potential in describing dynamic mechanical behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。