S-(2-Hydroxy-3,4-epoxybutyl)glutathione (DEB-GSH conjugate) is formed from the reaction of 1,2:3,4-diepoxybutane (DEB) with glutathione (GSH), and the conjugate is considerably more mutagenic than several other butadiene-derived epoxides-including DEB-in Salmonella typhimurium TA1535 [Cho, S.-H., (2010) Chem. Res. Toxicol. 23, 1544-1546]. We previously identified six DNA adducts in the reaction of the DEB-GSH conjugate with nucleosides and calf thymus DNA and two DNA adducts in livers of mice and rats treated with DEB [Cho, S.-H. and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 706-712]. To define the role of GSH conjugation in 1,3-butadiene (BD) metabolism and characterize the mechanism of GSH transferase (GST)-enhanced mutagenicity of DEB, mutation spectra of BD and its metabolites in the absence and presence of GST/GSH and mouse liver microsomes were compared in the rpoB gene of Escherichia coli TRG8. The presence of GST considerably enhanced mutations. The mutation spectra derived from the DEB-GSH conjugate, the DEB/GST/GSH system, and the BD/mouse liver microsomes/GST/GSH system matched each other and were different from those derived from the other systems devoid of GSH. The major adducts in E. coli TRG8 cells treated with the DEB/GST/GSH system, the BD/mouse liver microsomes/GST/GSH system, or the DEB-GSH conjugate were S-[4-(N(7)-guanyl)-2,3-dihydroxybutyl]GSH, S-[4-(N(3)-adenyl)-2,3-dihydroxybutyl]GSH, and S-[4-(N(6)-deoxyadenosinyl)-2,3-dihydroxybutyl]GSH, indicating the presence of the GSH-containing DNA adducts in the systems. These results, along with the strong enhancement of mutagenicity by GST in this system, indicate the relevance of these GSH-containing DNA adducts.
Mutation spectra of S-(2-hydroxy-3,4-epoxybutyl)glutathione: comparison with 1,3-butadiene and its metabolites in the Escherichia coli rpoB gene.
S-(2-羟基-3,4-环氧丁基)谷胱甘肽的突变谱:与大肠杆菌 rpoB 基因中 1,3-丁二烯及其代谢物的比较
阅读:6
作者:Cho Sung-Hee, Guengerich F Peter
| 期刊: | Chemical Research in Toxicology | 影响因子: | 3.800 |
| 时间: | 2012 | 起止号: | 2012 Jul 16; 25(7):1522-30 |
| doi: | 10.1021/tx3002109 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
