High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy.

高葡萄糖诱导斑马鱼早期眼部发育过程中玻璃体视网膜血管的变化:糖尿病视网膜病变的短期动物模型

阅读:3
作者:Jung Seung-Hyun, Kim Young Sook, Lee Yu-Ri, Kim Jin Sook
BACKGROUND AND PURPOSE: Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time-saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches. EXPERIMENTAL APPROACH: We developed a model for diabetic retinopathy using the early stage of transgenic zebrafish (flk:EGFP) by treating embryos with 130 mM glucose, from 3-6 days post fertilisation (high-glucose model). On day 6, lenses from zebrafish larvae were isolated and treated with 3% trypsin, and changes in hyaloid-retinal vessels were analysed using fluorescent stereomicroscopy. In addition, expression of tight junction proteins (such as zonula occludens-1), effects of hyperosmolar solutions and of hypoxia, and Vegf expression were assessed by RT -PCR. NO production was assessed with a fluorescent substrate. Effects of inhibitors of the VEGF receptor, NO synthesis and a VEGF antibody (ranibizumab) were also measured. KEY RESULTS: In this high-glucose model, dilation of hyaloid-retinal vessels, on day 6, was accompanied by morphological lesions with disruption of tight junction proteins, overproduction of Vegf mRNA and increased NO production. Treatment of this high-glucose model with an inhibitor of VEGF receptor tyrosine kinase or an inhibitor of NO synthase or ranibizumab decreased dilation of hyaloid-retinal vessels. CONCLUSIONS AND IMPLICATIONS: These findings suggest that short-term exposure of zebrafish larvae to high-glucose conditions could be used for screening and drug discovery for diabetic retinopathy and particularly for disorders of retinal vessels related to disruption of tight junction proteins and excessive VEGF and NO production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。