Spinal nerve ligation decreases γ-aminobutyric acidB receptors on specific populations of immunohistochemically identified neurons in L5 dorsal root ganglion of the rat.

脊神经结扎可减少大鼠 L5 背根神经节中经免疫组织化学鉴定的特定神经元群上的 α3-氨基丁酸B 受体

阅读:3
作者:Engle Mitchell P, Merrill Michelle A, Marquez De Prado Blanca, Hammond Donna L
This study examined the distribution of γ-aminobutyric acid (GABA)(B) receptors on immunohistochemically identified neurons, and levels of GABA(B(1)) and GABA(B(2)) mRNA, in the L4 and L5 dorsal root ganglia (DRG) of the rat in the absence of injury and 2 weeks after L5 spinal nerve ligation. In uninjured DRG, GABA(B(1)) immunoreactivity colocalized exclusively with the neuronal marker (NeuN) and did not colocalize with the satellite cell marker S-100. The GABA(B(1)) subunit colocalized to >97% of DRG neurons immunoreactive (IR) for neurofilament 200 (N52) or calcitonin gene-related peptide (CGRP), or labeled by isolectin B4 (IB4). Immunoreactivity for GABA(B(2)) was not detectable. L5 spinal nerve ligation did not alter the number of GABA(B(1)) -IR neurons or its colocalization pattern in the L4 DRG. However, ligation reduced the number of GABA(B(1)) -IR neurons in the L5 DRG by ≈38% compared with sham-operated and naïve rats. Specifically, ligation decreased the number of CGRP-IR neurons in the L5 DRG by 75%, but did not decrease the percent colocalization of GABA(B(1)) in those that remained. In the few IB4-positive neurons that remained in the L5 DRG, colocalization of GABA(B(1)) -IR decreased to 75%. Ligation also decreased levels of GABA(B(1)) and GABA(B(2)) mRNA in the L5, but not the L4 DRG compared with sham-operated or naïve rats. These findings indicate that the GABA(B) receptor is positioned to presynaptically modulate afferent transmission by myelinated, unmyelinated, and peptidergic afferents in the dorsal horn. Loss of GABA(B) receptors on primary afferent neurons may contribute to the development of mechanical allodynia after L5 spinal nerve ligation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。