DNAJB4/HLJ1 deficiency sensitizes diethylnitrosamine-induced hepatocarcinogenesis with peritumoral STAT3 activation.

DNAJB4/HLJ1 缺陷可增强二乙基亚硝胺诱导的肝癌发生,并伴有肿瘤周围 STAT3 激活

阅读:4
作者:Luo Wei-Jia, Hsu Wei-Lun, Lu Chih-Yun, Chien Min-Hui, Chang Jung-Hsuan, Su Kang-Yi
Environmental chemicals and toxins are known to impact human health and contribute to cancer developments. Among these, genotoxins induce genetic mutations critical for cancer initiation. In the liver, proliferation serves not only as a compensatory mechanism for tissue repair but also as a potential risk factor for the progression of premalignant lesions. The role of Human Liver DnaJ-Like Protein (DNAJB4/HLJ1), a stress-responsive heat shock protein 40, in genotoxin-induced liver carcinogenesis remains unexplored. Using whole-genome transcriptomic analysis, we demonstrate that HLJ1 deficiency in mice results in altered gene signatures enriched in pathways associated with chemically induced liver cancer and IL-6/STAT3 signaling activation. Employing diethylnitrosamine (DEN) as a carcinogen, we further reveal that STAT3 and H2AX phosphorylation induced by short-term DEN treatment are amplified in HLJ1-deficient mice. In long-term DEN experiments, HLJ1 deletion enhances tumor proliferation and progression, accompanied by pronounced STAT3 phosphorylation in normal tissues rather than in tumor regions. The tumor-suppressive role of peritumoral HLJ1 is validated through the transplantation of HLJ1-wildtype B16F1 and LLC cancer cell lines into syngeneic HLJ1-deficient mice, which exhibits an augmented tumorigenic phenotype compared to wildtype controls. This study uncovers a previously unrecognized role of HLJ1 in suppressing liver carcinogenesis via the downregulation of STAT3 signaling in peritumoral normal cells. These findings suggest that HLJ1 reinforcement represents a promising strategy for liver cancer treatment and prevention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。