Exogenous bacterial cellulose induces plant tissue regeneration through the regulation of cytokinin and defense networks.

外源细菌纤维素通过调节细胞分裂素和防御网络诱导植物组织再生

阅读:3
作者:Ruiz-Solaní Nerea, Alonso-Díaz Alejandro, Capellades Montserrat, Serrano-Ron Laura, Ferro-Costa Miquel, Sanchez-Corrionero Álvaro, Rabissi Agnese, Argueso Cristiana T, Rubio-Somoza Ignacio, Laromaine Anna, Moreno-Risueno Miguel A, Coll Núria S
Regeneration is a unique feature of postembryonic development extensively observed in plants. The capacity to induce regeneration exogenously is limited and usually confined to meristematic-like tissues. We show that bacterial cellulose (BC), but not other structurally similar matrixes, induces postwounding regeneration in nonmeristematic plant tissues via a distinctive route to callus-mediated regenerative programs. The BC-specific program involves cytokinin operating concurrently with strongly activated plant biotic response genes to induce plant regeneration. A reactive oxygen species (ROS) burst, normally associated with defense responses, is sustained upon BC application, involving a network of tightly interconnected transcription factors, where WRKY8, known for regulating stress responses, shows a clustering and hierarchical prevalence. WRKY8 regulates BC-mediated plant regeneration and ROS homeostasis, including superoxide anion accumulation, to potentially promote cell proliferation after wounding. Collectively, our results demonstrate that the cytokinin- and ROS-associated defense responses can be targeted by BC application to promote plant wound regeneration through alternative regenerative programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。