Sleep spindles and slow waves are physiological markers for age-related changes in gray matter in brain regions supporting problem-solving skills.

睡眠纺锤波和慢波是大脑中负责解决问题能力的区域灰质随年龄变化的生理标志

阅读:5
作者:Toor Balmeet, van den Berg Nicholas, Ray Laura B, Fogel Stuart M
As we age, the added benefit of sleep for memory consolidation is lost. One of the hallmark age-related changes in sleep is the reduction of sleep spindles and slow waves. Gray matter neurodegeneration is related to both age-related changes in sleep and age-related changes in memory, including memory for problem-solving skills. Here, we investigated whether spindles and slow waves might serve as biological markers for neurodegeneration of gray matter and for the related memory consolidation deficits in older adults. Forty healthy young adults (20-35 yr) and 30 healthy older adults (60-85 yr) were assigned to either nap or wake conditions. Participants were trained on the Tower of Hanoi in the morning, followed by either a 90-min nap opportunity or period of wakefulness, and were retested afterward. We found that age-related changes in sleep spindles and slow waves were differentially related to gray matter intensity in young and older adults in brain regions that support sleep-dependent memory consolidation for problem-solving skills. Specifically, we found that spindles were related to gray matter in neocortical areas (e.g., somatosensory and parietal cortex), and slow waves were related to gray matter in the anterior cingulate, hippocampus, and caudate, all areas known to support problem-solving skills. These results suggest that both sleep spindles and slow waves may serve as biological markers of age-related neurodegeneration of gray matter and the associated reduced benefit of sleep for memory consolidation in older adults.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。