Selenocysteinyl-tRNA(Sec), cysteinyl-tRNA(Cys), glutaminyl-tRNA(Gln), and asparaginyl-tRNA(Asn) in many organisms are formed in an indirect pathway in which a non-cognate amino acid is first attached to the tRNA. This non-cognate amino acid is then converted to the cognate amino acid by a tRNA-dependent modifying enzyme. The in vitro characterization of these modifying enzymes is challenging due to the fact the substrate, aminoacyl-tRNA, is labile and requires a prior enzymatic step to be synthesized. The need to separate product aa-tRNA from unreacted substrate is typically a labor- and time-intensive task; this adds another impediment in the investigation of these enzymes. Here, we review four different approaches for studying these tRNA-dependent amino acid modifications. In addition, we describe in detail a [32P]/nuclease P1 assay for glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) formation which is sensitive, enables monitoring of the aminoacyl state of the tRNA, and is less time consuming than some of the other techniques. This [32P]/nuclease P1 method should be adaptable to studying tRNA-dependent selenocysteine and cysteine synthesis.
Assays for transfer RNA-dependent amino acid biosynthesis.
转移RNA依赖性氨基酸生物合成的检测方法
阅读:4
作者:Sheppard Kelly, Akochy Pierre-Marie, Söll Dieter
| 期刊: | Methods | 影响因子: | 4.300 |
| 时间: | 2008 | 起止号: | 2008 Feb;44(2):139-45 |
| doi: | 10.1016/j.ymeth.2007.06.010 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
