BACKGROUND: Sleep stage scoring, which is an essential step in the quantitative analysis of sleep monitoring, relies on human experts and is therefore subjective and time-consuming; thus, an easy and accurate method is needed for the automatic scoring of sleep stages. METHODS: In this study, we constructed a deep convolutional recurrent (DCR) model for the automatic scoring of sleep stages based on a raw single-lead electrocardiogram (ECG). The DCR model uses deep convolutional and recurrent neural networks to apply the complex and cyclic rhythms of human sleep. It consists of three convolutional and two recurrent layers and is optimized by dropout and batch normalization. The constructed DCR model was evaluated using multiclass classification, including five-class sleep stages (wake, N1, N2, N3, and rapid eye movement (REM)) and three-class sleep stages (wake, non-REM (NREM), and REM), using a raw single-lead ECG signal. The single-lead ECG signal was collected from 112 subjects in two groups: control (52 subjects) and sleep apnea (60 subjects). The single-lead ECG signal was preprocessed, segmented at a duration of 30 s, and divided into a training set of 89 subjects and test set of 23 subjects. RESULTS: We achieved an overall accuracy of 74.2% for five classes and 86.4% for three classes. CONCLUSIONS: These results show the DCR model's superior performance over those in the previous studies, highlighting that the model can be an alternative tool for sleep monitoring and sleep screening.
Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal.
基于单导联心电信号的深度卷积循环模型用于自动睡眠分期评分
阅读:5
作者:Urtnasan Erdenebayar, Park Jong-Uk, Joo Eun Yeon, Lee Kyoung-Joung
| 期刊: | Diagnostics | 影响因子: | 3.300 |
| 时间: | 2022 | 起止号: | 2022 May 15; 12(5):1235 |
| doi: | 10.3390/diagnostics12051235 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
