A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.

血凝素第 218 位残基的单个氨基酸替换可改善甲型流感 (H7N9) 候选疫苗病毒的生长

阅读:4
作者:Li Xing, Gao Yamei, Ye Zhiping
The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。