Anti-Inflammatory Mechanisms of Curcumin and Its Metabolites in White Adipose Tissue and Cultured Adipocytes.

姜黄素及其代谢物在白色脂肪组织和培养脂肪细胞中的抗炎机制

阅读:5
作者:Islam Tariful, Scoggin Shane, Gong Xiaoxia, Zabet-Moghaddam Masoud, Kalupahana Nishan S, Moustaid-Moussa Naima
The plant-derived polyphenol curcumin alleviates the inflammatory and metabolic effects of obesity, in part, by reducing adipose tissue inflammation. We hypothesized that the benefits of curcumin supplementation on diet-induced obesity and systemic inflammation in mice occur through downregulation of white adipose tissue (WAT) inflammation. The hypothesis was tested in adipose tissue from high-fat diet-induced obese mice supplemented with or without curcumin and in 3T3-L1 adipocytes treated with or without curcumin. Male B6 mice were fed a high-fat diet (HFD, 45% kcal fat) with or without 0.4% (w/w) curcumin supplementation (HFC). Metabolic changes in these mice have been previously reported. Here, we determined the serum levels of the curcumin metabolites tetrahydrocurcumin (THC) and curcumin-O-glucuronide (COG) using mass spectrometry. Moreover, we determined interleukin 6 (IL-6) levels and proteomic changes in LPS-stimulated 3T3-L1 adipocytes treated with or without curcumin by using immunoassays and mass spectrometry, respectively, to gain further insight into any altered processes. We detected both curcumin metabolites, THC and COG, in serum samples from the curcumin-fed mice. Both curcumin and its metabolites reduced LPS-induced adipocyte IL-6 secretion and mRNA levels. Proteomic analyses indicated that curcumin upregulated EIF2 and mTOR signaling pathways. Overall, curcumin exerted anti-inflammatory effects in adipocytes, in part by reducing IL-6, and these effects may be linked to the upregulation of the mTOR signaling pathway, warranting additional mechanistic studies on the effects of curcumin and its metabolites on metabolic health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。