Recent studies have shown that chronic inflammation in atherosclerotic (ATH) lesions is due to an inability to resolve the inflammatory response. We evaluated the therapeutic potential of specialized pro-resolving mediators (SPMs) incorporated into biomimetic lipid nanoemulsions covered with macrophage membranes (Bio-LN/SPMs) to enhance their stability, targeting, and bioactivity in resolving atherosclerotic plaque inflammation. We utilized both in vitro and in vivo experimental models to test this hypothesis. In vitro, we found that Bio-LN/SPMs significantly reduced the inflammatory markers VCAM-1, MCP-1 in TNF-α-activated endothelial and smooth muscle cells, and iNOS, and NLRP3 in LPS-activated macrophages. In contrast, free SPMs exhibited a more modest effect. In vivo, the i.v. administration of Bio-LN/SPMs in ApoE-deficient mice with progressive atherosclerotic lesions developed after administration for 4 and 8 weeks of a high-fat diet, reduced plasma triglycerides, improved renal function, and decreased plasma proteins associated with complement activation and inflammation (i.e. C4d, C5b-9, IL-6, and MCP-1) to a greater extent than other treatment groups. Bio-LN/SPMs also affected circulated monocyte subpopulations by increasing the percentage of anti-inflammatory Ly6C(low) monocytes and reducing that of pro-inflammatory Ly6C(high) monocytes. Additionally, they promoted the transition of macrophages in atherosclerotic plaques to a reparative M2 phenotype. They decreased the production of TNF-α, IL-1β, and IL-6 cytokines, along with lipid deposits in the aorta of ApoE-deficient mice. These findings demonstrate the improved therapeutic efficacy of Bio-LN/SPMs compared to unincorporated SPMs and standard nanoemulsions (LN/SPMs), emphasizing their potential as a novel approach for treating atherosclerosis and other inflammatory diseases.
Inflammation resolution-based treatment of atherosclerosis using biomimetic nanocarriers loaded with specialized pro-resolving lipid mediators.
利用载有特殊促消退脂质介质的仿生纳米载体治疗动脉粥样硬化的炎症消退
阅读:5
作者:Anghelache Maria, Voicu Geanina, Anton Ruxandra, Safciuc Florentina, Boteanu Delia, Deleanu Mariana, Turtoi Mihaela, Simionescu Maya, Manduteanu Ileana, Calin Manuela
| 期刊: | Materials Today Bio | 影响因子: | 10.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 5; 32:101733 |
| doi: | 10.1016/j.mtbio.2025.101733 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
