The ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs). We observed that ESCs carrying mutations in Vmp1 and Tmem41b show robust self-renewal and an unperturbed pluripotent expression profile but accumulate LC3-positive autophagosomes and lipid droplets consistent with defects in autophagy and lipid metabolism. ESCs carrying combined mutations in Vmp1 and Tmem41b can differentiate into a wide range of embryonic cell types. However, differentiation into primitive endoderm-like cells in culture is impaired, and the establishment of extra-embryonic endoderm stem (XEN) cells is delayed. Mechanistically, we show the deregulation of genes that are associated with WNT signaling. This is further confirmed by cell surface proteome profiling, which identified a significant reduction of the WNT-receptor FZD2 at the plasma membrane in Vmp1 and Tmem41b double mutant ESCs. Importantly, we show that transgenic expression of Fzd2 rescues XEN differentiation. Our findings identify the role of the lipid scramblases VMP1 and TMEM41B in WNT signaling during extra-embryonic endoderm development and characterize their distinct and overlapping functions.
The scramblases VMP1 and TMEM41B are required for primitive endoderm specification by targeting WNT signaling.
扰乱酶 VMP1 和 TMEM41B 通过靶向 WNT 信号传导,是原始内胚层分化所必需的
阅读:20
作者:Holzner Markus, Sonicki Tea, Hunn Hugo, Uliana Federico, Jiang Weijun, Gade Vamshidhar R, Weis Karsten, Wutz Anton, Di Minin Giulio
| 期刊: | Cell Death and Differentiation | 影响因子: | 15.400 |
| 时间: | 2025 | 起止号: | 2025 Jun;32(6):1086-1098 |
| doi: | 10.1038/s41418-024-01435-x | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
