Deciphering Transcription-Translation-Folding (TX-TL-FD) for Enhancing Cutinase Production in T7 System and Genetic Chaperone-Equipped Escherichia coli Strains.

破译转录-翻译-折叠(TX-TL-FD)以提高T7系统和基因伴侣大肠杆菌菌株中角质酶的产量

阅读:6
作者:Hsiang Chuan-Chieh, Ng I-Son
T7 RNA polymerase (T7RNAP), orthogonal to the T7 promoter, is a powerful tool in engineered Escherichia coli that enables the production of many different harsh enzymes. Still, it requires precise control, particularly when expressing toxic proteins. The optimized strategy for the interconnected processes of transcription (TX), translation (TL), and protein folding (FD) in the T7 system is still not well understood. Therefore, we developed a quantitative adjustment index (AI) to evaluate all regulatory factors within the "tri-synergistic TX-TL-FD" pathway to obtain high-level production of leaf-branch compost cutinase mutant (ICCM), an enzyme challenging to express in soluble form. Among six E. coli chassis (BD, B7G, BKJ, C43, C7G, and CKJ), and considering the effect of replication origin, ribosome binding site (RBS), and chaperones, we identified T7RNAP level and translation initiation region (TIR) as the primary determinants of expression efficiency. Coordinated regulation of TX-TL proved the most effective performance, thus enhancing ICCM expression by 90%. In contrast, FD optimization through temperature modulation yielded only 10% enhancement. Notably, molecular chaperones of GroELS and DnaK/J showed benefits only after achieving optimal TX-TL balance. This hierarchical framework of trisynergistic regulation in the T7 system provides a universal strategy to express complex proteins in engineered E. coli.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。