Palliative Role of Zamzam Water against Cyclosporine-Induced Nephrotoxicity through Modulating Autophagy and Apoptosis Crosstalk.

通过调节自噬和细胞凋亡的相互作用,渗渗泉水对环孢素诱导的肾毒性发挥缓解作用

阅读:5
作者:Taha Medhat, Elazab Sara T, Baokbah Tourki A S, Al-Kushi Abdullah G, Mahmoud Mohamed Ezzat, Abdelbagi Omer, Qusty Naeem F, El-Shenbaby Ibrahim, Babateen Omar, Badawy Alaa M, Ibrahim Mohie Mahmoud
Cyclosporine (CsA) is considered one of the main components of treatment protocols for organ transplantation owing to its immunosuppressive effect. However, its use is very restricted due to its nephrotoxic effect. ZW is an alkaline fluid rich in various trace elements and has a great ability to stimulate antioxidant processes. This study aimed to investigate the possible mitigating effect of ZW on CsA-induced nephrotoxicity and its underlying mechanisms. Forty rats were allocated into four groups (n = 10): a control group, ZW group, cyclosporine A group (injected subcutaneously (SC) with CsA (20 mg/kg/day)), and cyclosporine A+ Zamzam water group (administered CsA (SC) and ZW as their only drinking water (100 mL/cage/day) for 21 days). Exposure to CsA significantly (p < 0.001) increased the serum creatinine level, lipid peroxidation marker level (malondialdehyde; MDA), and the expression of apoptotic markers procaspase-8, caspase-8, caspase- 9, calpain, cytochrome c, caspas-3, P62, and mTOR in renal tissues. Meanwhile, it markedly decreased (p< 0.001) the autophagic markers (AMPK, ULK-I, ATag5, LC3, and Beclin-1), antiapoptotic Bcl-2, and antioxidant enzymes. Moreover, the administration of CsA caused histological alterations in renal tissues. ZW significantly (p < 0.001) reversed all the changes caused by CsA and conclusively achieved a positive outcome in restraining CsA-induced nephrotoxicity, as indicated by the restoration of the histological architecture, improvement of renal function, inhibition of apoptosis, and enhancement of autophagy via the AMPK/mTOR pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。