BACKGROUND: In a natural population, the alleles of multiple tightly linked loci on the same chromosome co-segregate and are passed non-randomly from generation to generation. Capitalizing on this phenomenon, a group of mapping methods, commonly referred to as the linkage disequilibrium-based mapping (LD mapping), have been developed recently for detecting genetic associations. However, most current LD mapping methods mainly employed single-marker analysis, overlooking the rich information contained within adjacent linked loci. RESULTS: We extend the single-marker LD mapping to include two linked loci and explicitly incorporate their LD information into genetic mapping models (tmLD). We establish the theoretical foundations for the tmLD mapping method and also provide a thorough examination of its statistical properties. Our simulation studies demonstrate that the tmLD mapping method significantly improves the detection power of association compared to the single-marker based and also haplotype based mapping methods. The practical usage and properties of the tmLD mapping method were further elucidated through the analysis of a large-scale dental caries GWAS data set. It shows that the tmLD mapping method can identify significant SNPs that are missed by the traditional single-marker association analysis and haplotype based mapping method. An R package for our proposed method has been developed and is freely available. CONCLUSIONS: The proposed tmLD mapping method is more powerful than single marker mapping generally used in GWAS data analysis. We recommend the usage of this improved method over the traditional single marker association analysis.
Genome-wide two-marker linkage disequilibrium mapping of quantitative trait loci.
全基因组双标记连锁不平衡作图法分析数量性状基因座
阅读:10
作者:Yang Jie, Zhu Wei, Chen Jiansong, Zhang Qiao, Wu Song
| 期刊: | BMC Genetics | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Feb 8; 15:20 |
| doi: | 10.1186/1471-2156-15-20 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
