Analysis of the protective capacity of three Streptococcus suis proteins induced under divalent-cation-limited conditions.

分析在二价阳离子限制条件下诱导的三种猪链球菌蛋白的保护能力

阅读:4
作者:Aranda Jesús, Garrido Maria Elena, Cortés Pilar, Llagostera Montserrat, Barbé Jordi
Streptococcus suis is a gram-positive pathogen that causes serious diseases in pigs and, in some cases, humans. Three genes of the virulent S. suis 89/1591 strain, encoding putative divalent-cation-binding lipoproteins, were isolated based on information obtained from the draft annotation files of this organism's genome. The products of these genes, which are inducible by divalent-cation deprivation, were subsequently purified, and their immunogenic and protective abilities were analyzed. All three proteins (SsuiDRAFT 0103, SsuiDRAFT 0174, and SsuiDRAFT 1237) were found to be immunogenic, but only one of them (SsuiDRAFT 0103) induced a significant protective response (87.5%, P = 0.01) against the same S. suis strain. Furthermore, the S. suis ssuiDRAFT 1240 gene (adcR), which encodes a predicted regulator of Zn2+ and/or Mn2+ uptake in streptococci, was cloned, and its protein product was purified. Electrophoretic mobility shift assays with purified S. suis AdcR protein showed experimentally, for the first time, that the AdcR DNA-binding sequence corresponds to the TTAACNRGTTAA motif. In addition, a requirement for either Zn2+ or Mn2+, but not Fe2+, to establish in vitro binding of AdcR to its target sequence and the ability of AdcR to bind the ssuiDRAFT 0103 and ssuiDRAFT 1237 gene promoters but not the promoter of the ssuiDRAFT 0174 gene were demonstrated. Taken together, these data suggest that SsuiDRAFT 0103 is a good candidate for vaccines against S. suis and support preliminary results indicating that bacterial envelope proteins involved in the uptake of divalent cations other than iron may be useful for protective purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。