CD4 T cells mediate axonal damage and spinal cord motor neuron apoptosis in murine p0106-125-induced experimental autoimmune neuritis.

CD4 T 细胞介导小鼠 p0106-125 诱导的实验性自身免疫性神经炎中的轴突损伤和脊髓运动神经元凋亡

阅读:4
作者:Brunn Anna, Utermöhlen Olaf, Carstov Mariana, Ruiz Monica Sánchez, Miletic Hrvoje, Schlüter Dirk, Deckert Martina
The pathogenesis of inflammatory autoimmune diseases of the peripheral nervous system, leading to demyelination and/or axonal damage, remains incompletely understood. In particular, it is controversial regarding the extent to which (i) autoimmune-mediated destruction of peripheral nerves results in secondary damage of the central nervous system, and (ii) CD4 and CD8 T cells contribute to disease. To address these issues, we applied the murine model of P0(106-125)-induced experimental autoimmune neuritis. Immunization of C57BL/6 mice with P0(106-125) resulted in severe axonal damage and mild demyelination. Importantly, these mice developed a "dying-back" axonopathy with apoptosis of a large fraction of neurons in the anterior horn of the lumbar and thoracic spinal cord and a progressive neurogenic muscular atrophy. T cell-depletion experiments identified CD4, but not CD8, T cells as important mediators of experimental autoimmune neuritis. CD4 T cells represented the major cellular source of antigen-specific interferon-gamma and interleukin-17 production, regulated the number of tumor necrosis factor-positive and inducible nitric oxide synthase-positive macrophages in the diseased sciatic nerve, and mediated axonal damage and subsequent neuronal apoptosis and neurogenic muscular atrophy. In contrast, the demyelination of peripheral nerves was only slightly ameliorated in CD4 T cell-depleted mice. In conclusion, P0(106-125)-induced experimental autoimmune neuritis is a CD4 T cell-mediated autoimmune disease that affects both the peripheral and central nervous systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。