BACKGROUND: Small-diameter, myelinated axons are selectively susceptible to dysfunction in several inflammatory PNS and CNS diseases, resulting in pain and degeneration, but the mechanism is not known. METHODS: We used in vivo confocal microscopy to compare the effects of inflammation in experimental autoimmune neuritis (EAN), a model of Guillain-Barré syndrome (GBS), on mitochondrial function and transport in large- and small-diameter axons. We have compared mitochondrial function and transport in vivo in (i) healthy axons, (ii) axons affected by experimental autoimmune neuritis, and (iii) axons in which mitochondria were focally damaged by laser induced photo-toxicity. RESULTS: Mitochondria affected by inflammation or laser damage became depolarized, fragmented, and immobile. Importantly, the loss of functional mitochondria was accompanied by an increase in the number of mitochondria transported towards, and into, the damaged area, perhaps compensating for loss of ATP and allowing buffering of the likely excessive Ca(2+) concentration. In large-diameter axons, healthy mitochondria were found to move into the damaged area bypassing the dysfunctional mitochondria, re-populating the damaged segment of the axon. However, in small-diameter axons, the depolarized mitochondria appeared to "plug" the axon, obstructing, sometimes completely, the incoming (mainly anterograde) transport of mitochondria. Over time (~â2 h), the transported, functional mitochondria accumulated at the obstruction, and the distal part of the small-diameter axons became depleted of functional mitochondria. CONCLUSIONS: The data show that neuroinflammation, in common with photo-toxic damage, induces depolarization and fragmentation of axonal mitochondria, which remain immobile at the site of damage. The damaged, immobile mitochondria can "plug" myelinated, small-diameter axons so that successful mitochondrial transport is prevented, depleting the distal axon of functioning mitochondria. Our observations may explain the selective vulnerability of small-diameter axons to dysfunction and degeneration in a number of neurodegenerative and neuroinflammatory disorders.
Mitochondrial damage and "plugging" of transport selectively in myelinated, small-diameter axons are major early events in peripheral neuroinflammation.
线粒体损伤和有髓鞘、小直径轴突中运输的选择性“堵塞”是外周神经炎症的主要早期事件
阅读:4
作者:Sajic Marija, Ida Keila Kazue, Canning Ryan, Gregson Norman A, Duchen Michael R, Smith Kenneth J
| 期刊: | Journal of Neuroinflammation | 影响因子: | 10.100 |
| 时间: | 2018 | 起止号: | 2018 Feb 27; 15(1):61 |
| doi: | 10.1186/s12974-018-1094-8 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
