In systems biocatalysis, combining pathway enzymes in vitro allows for the conversion of basic substrates into more complex, valuable chemicals. However, in vitro enzyme cascades are not yet economically viable for large-scale bio-based chemical production. Enhancing pathway efficiency through enzyme colocalization on synthetic protein scaffolds is a proposed solution, though still debated. We constructed a synthetic protein scaffold that colocalises the first three glycolytic enzymes using cohesin-dockerin interactions. Initially, we converted wild-type enzymes to the docking enzyme mode and evaluated their activity. Next, we demonstrate how the colocalisation of the three docking enzymes on distinct scaffolds enhances the enzyme cascade's production. Starting from glucose, the multi-enzyme complexes produced fructose-1,6-bisphosphate, confirming the activity of each enzyme. PfkA, which converts fructose-6-phosphate and ATP to fructose-1,6-bisphosphate and ADP, was identified as the rate-limiting enzyme. We demonstrated that scaffolding proximity effects lead to higher product output than free docking enzymes, particularly at lower enzyme densities. Further research is needed to determine the relevance of enzyme colocalisation under industrial production settings. In addition, optimising an enzyme cascade demands a thorough understanding of reaction mechanisms and kinetics. The VersaTile method streamlines optimisation studies of modular proteins and complexes, enabling analysis of a broader design space by bypassing technical preparatory hurdles.
Designer Glycolysomes: Colocalisation of Glycolytic Enzymes on a Cellulosome-Based Synthetic Protein Scaffold.
设计型糖酵解体:糖酵解酶在基于纤维素酶体的合成蛋白支架上的共定位
阅读:13
作者:Elias Marte, Meert Kenan, Vanderstraeten Julie, Lamote Babette, Briers Yves
| 期刊: | Microbial Biotechnology | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Apr;18(4):e70134 |
| doi: | 10.1111/1751-7915.70134 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
