Conclusions
These studies demonstrate that α-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting α-catenins might be a useful strategy to promote myocardial regeneration after injury.
Objective
To investigate the role of α-catenins in the heart using cardiac-specific αE- and αT-catenin double knockout mice.
Results
We used 2 cardiac-specific Cre transgenes to delete both αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes either in the perinatal or in the adult heart. Perinatal depletion of α-catenins increased cardiomyocyte number in the postnatal heart. Increased nuclear Yap and the cell cycle regulator cyclin D1 accompanied cardiomyocyte proliferation in the α-catenin double knockout hearts. Fetal genes were increased in the α-catenin double knockout hearts indicating a less mature cardiac gene expression profile. Knockdown of α-catenins in neonatal rat cardiomyocytes also resulted in increased proliferation, which could be blocked by knockdown of Yap. Finally, inactivation of α-catenins in the adult heart using an inducible Cre led to increased nuclear Yap and cardiomyocyte proliferation and improved contractility after myocardial infarction. Conclusions: These studies demonstrate that α-catenins are critical regulators of Yap, a transcriptional coactivator essential for cardiomyocyte proliferation. Furthermore, we provide proof of concept that inhibiting α-catenins might be a useful strategy to promote myocardial regeneration after injury.
