Ssr4 serves as a cosubunit of chromatin-remodeling SWI/SNF and RSC complexes in yeasts but remains functionally uncharacterized due to its essentiality for yeast viability. Here, we report pleiotropic effects of the deletion of the ssr4 ortholog nonessential for cell viability in Beauveria bassiana, an asexual insect mycopathogen. The deletion of ssr4 resulted in severe growth defects on different carbon/nitrogen sources, increased hyphal hydrophilicity, blocked hyphal differentiation, and 98% reduced conidiation capacity compared to a wild-type standard. The limited Îssr4 conidia featured an impaired coat with disordered or obscure hydrophobin rodlet bundles, decreased hydrophobicity, increased size, and lost insect pathogenicity via normal cuticle infection and 90% of virulence via intrahemocoel injection. The expression of genes required for hydrophobin biosynthesis and assembly of the rodlet layer was drastically repressed in more hydrophilic Îssr4 cells. Transcriptomic analysis revealed 2,517 genes differentially expressed in the Îssr4 mutant, including 1,505 downregulated genes and 1,012 upregulated genes. The proteins encoded by hundreds of repressed genes were involved in metabolism and/or transport of carbohydrates, amino acids, and lipids, inorganic ion transport and energy production or conversion, including dozens involved in DNA replication, transcription, translation, and posttranslational modifications. However, purified Ssr4 samples showed no DNA-binding activity, implying that the role of Ssr4 in genome-wide gene regulation could rely upon its acting as a cosubunit of the two complexes. These findings provide the first insight into an essential role of Ssr4 in the asexual cycle in vitro and in vivo of B. bassiana and highlights its importance for the filamentous fungal lifestyle.IMPORTANCE Ssr4 is known to serve as a cosubunit of chromatin-remodeling SWI/SNF and RSC complexes in yeasts but has not been functionally characterized in fungi. This study unveils for the first time the pleiotropic effects caused by deletion of ssr4 and its role in mediating global gene expression in a fungal insect pathogen. Our findings confirm an essential role of Ssr4 in hydrophobin biosynthesis and assembly required for growth, differentiation, and development of aerial hyphae for conidiation and conidial adhesion to insect surface and its essentiality for insect pathogenicity and virulence-related cellular events. Importantly, Ssr4 can regulate nearly one-fourth of all genes in the fungal genome in direct and indirect manners, including dozens involved in gene activity and hundreds involved in metabolism and/or transport of carbohydrates, amino acids, lipids, and/or inorganic ions. These findings highlight a significance of Ssr4 for filamentous fungal lifestyle.
Nuclear Ssr4 Is Required for the In Vitro and In Vivo Asexual Cycles and Global Gene Activity of Beauveria bassiana.
核 Ssr4 是球孢白僵菌体外和体内无性繁殖周期及整体基因活性所必需的
阅读:3
作者:Shao Wei, Cai Qing, Tong Sen-Miao, Ying Sheng-Hua, Feng Ming-Guang
| 期刊: | mSystems | 影响因子: | 4.600 |
| 时间: | 2020 | 起止号: | 2020 Apr 21; 5(2):e00677-19 |
| doi: | 10.1128/mSystems.00677-19 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
