Arabidopsis root apical meristem adaptation to an osmotic gradient condition: an integrated approach from cell expansion to gene expression.

拟南芥根尖分生组织对渗透梯度条件的适应:从细胞扩张到基因表达的综合方法

阅读:4
作者:Píriz-Pezzutto Selene, Martínez-Moré Mauro, Sainz María Martha, Borsani Omar, Sotelo-Silveira Mariana
Climate change triggers abiotic stress, such as drought and high salinity, that can cause osmotic stress. Water availability can limit plant growth, and the root tip tissues initially sense it. Most experiments destined to understand root growth adaptation to osmotic stress apply homogeneous high osmotic potentials (osmotic shock) to shoots and roots. However, this treatment does not represent natural field conditions where a root may encounter increasing osmotic potentials while exploring the soil. Osmotic shock severely reduces root growth rate, decreasing cell division in the proximal meristem and reducing mature cell length. In this work, we developed an in vitro osmotic gradient experimental system with increasing osmotic potentials. The system generates a controlled osmotic gradient in the root growth zone while exposing the aerial tissues to control conditions. The osmotic gradient system allowed Arabidopsis seedlings of Col-0 and ttl1 mutant (affected in the gene TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1)) to sustain proper root growth for 25 days, reaching osmotic potentials of -1.2 MPa. We demonstrated that roots of seedlings grown in the osmotic gradient sustain a higher root growth rate than those that were grown under a homogeneous high osmotic potential. Furthermore, we found out that the expression of some genes is modified in the roots grown in the osmotic gradient compared to those grown in osmotic shock. Our data indicate that using an osmotic gradient can improve our understanding of how plants respond to osmotic stress and help find new genes to improve plant field performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。