While the U1 small nuclear ribonucleoprotein (snRNP) plays a crucial role in early spliceosome assembly, the mechanisms by which it coordinates with other splicing factors for efficient assembly remain elusive. This study aimed to examine the role of the Swt21 protein in regulating U1 snRNP in Saccharomyces cerevisiae. Swt21p was required for efficient pre-mRNA splicing both in vivo and in vitro. Deletion of SWT21 altered the splicing patterns of two-intron SUS1 RNA, causing intron retention and exon skipping. Spliceosome assembly analysis revealed that in the pre-B complex, the levels of U1 protein components, as well as U1 RNA, were decreased following SWT21 deletion, highlighting the compromised stability of U1 snRNP during this stage. Consistently, in the absence of Swt21p, free isoform of U1 component Nam8p was observed, and its proper nuclear localization was disrupted, demonstrating the functional importance of Swp21p for the stable association of Nam8p with U1 snRNP. Moreover, Swt21p remained primarily in a free state under physiological conditions and did not associate with the pre-B complex. Additionally, TAP analysis revealed that Swt21p-associated proteins are involved in cellular processes beyond splicing. These findings collectively indicate that Swt21p functions as a spliceosome regulator rather than a core component and support a model wherein Swt21p contributes to U1 snRNP stability during early spliceosome assembly.
Swt21p Is Required for Nam8p-U1 snRNP Association and Efficient Pre-mRNA Splicing in Saccharomyces cerevisiae.
Swt21p 是酿酒酵母中 Nam8p-U1 snRNP 结合和有效前体 mRNA 剪接所必需的
阅读:4
作者:Lin Ke, Fu Xiuhu, Wang Lulu, Xiao Sa, Wang Shenxin, Fan Yingjie, An Xinyu, Boon Kum-Loong, Bao Penghui
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 6; 26(12):5440 |
| doi: | 10.3390/ijms26125440 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
